Tetrahedron Letters, Vol.27, No.6, pp 655-658, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

> DIVERSION OF AN INTRAMOLECULAR [2 + 4] CYCLOADDITION REACTION INTO A [2 + 2] PATHWAY BY ELECTROPHILIC CATALYSIS.

Philip Magnus* and James Schultz Department of Chemistry, Indiana University, Bloomington IN 47405 Kendall N. Houk Department of Chemistry, University of Pittsburgh, Pittsburgh PA 15260

SUMMARY: The intramolecular [2 + 4] cycloaddition process <u>1</u> into <u>2</u> is diverted to a [2 + 2] process by electrophilic catalysis, <u>1</u> into <u>4</u>.

The total synthesis of the kopsane indole alkaloids was dependent upon an intramolecular [2+4] cycloaddition reaction that transformed the homoannular diene <u>1</u> into the basic kopsane skeleton <u>2</u>.¹ While the regiochemical mode of cyclization shown leads to the desired structure <u>2</u>, the reverse mode, namely <u>1</u> into <u>3</u>, would have resulted in the so-called fruticosane skeleton.² Clearly, this pathway would have to proceed through a more highly strained transition state, and as such is not observed.

 $(R = SO_2C_6H_4OMe-p \text{ throughout})$

In view of the recent exciting developments in both radical-cation³ and proton catalysis⁴ of the Diels-Alder reaction, it was of some considerable interest to examine the response of 1 to these conditions to see if the "normal"

regiochemical pathway to $\underline{2}$ could be changed.

Treatment of $\underline{1}$ with $(\underline{p}-BrC_{6}H_{4})_{3}\overline{h}^{*}SbCl_{6}/CH_{2}Cl_{2}/20^{\circ}C$ for 0.5h gave the cyclobutane adduct $\underline{4}$ (72%), m.p. 262-263° (MeOH). The ¹H NMR data⁵ enabled the structural assignment $\underline{4}$ to be made, but in view of its unprecedented nature it was unambiguously confirmed by single-crystal X-ray analysis.⁶ Similarly, when $\underline{1}$ was treated with trifluoroacetic acid/CH₂Cl₂/20°C or AgOAc/CH₂Cl₂/20°C the cyclobutane adduct $\underline{4}$ was the only detectable product, uncontaminated by either $\underline{2}$ or $\underline{3}$. The cyclobutane derivative $\underline{4}$ was thermally stable to 300° C, and did not undergo photochemical 1,3-shifts to give the fruticosane skeleton $\underline{3}$. In a related series of experiments intended to examine the interaction of an acetyl-ene suspended over the internal face of the homoannular diene moiety, we treated $\underline{5}^{7}$ with AgOAc(cat)/AcOH/H₂SO₄/20°C and isolated the adduct $\underline{6}$ (80%),⁸ m.p. 204-205° (MeOH). The presence of the imine functionality in $\underline{6}$ was confirmed by treatment of $\underline{6}$ with TMSCN/ClCO₂Me/ZnI₂(cat) to give $\underline{7}$ (97%), m.p. 235-236° (MeOH),⁹ whose structure was proven by single crystal X-ray analysis.¹⁰ The adduct 6 did not undergo thermal or photochemically induced 1,3-shifts.

656

The SCHEME 1 depicts a possible mechanistic explanation for the formation of the cyclobutane adduct 4. It should be noted that the aminium cation-radical often generates protons.^{3,4} Interaction of the homoannular diene 1 with an electrophile (H^+ or Ag^+) can produce an iminium ion 8, which is trapped by the pendant alkene to give 9. The secondary carbonium ion 9 is situated directly above the cyclohexenyl ring, which allows closure of the cyclobutane ring and proton loss to give 4.

The formation of $\underline{6}$ is best rationalized by interaction of the acetylene with Ag^{\dagger} to give the vinylcation $\underline{10}$, which is trapped by the homoannular diene

SCHEME 1

SCHEME 2

to give the iminium ion <u>11</u>. Since <u>11</u> cannot lose a proton, nucleophile attack (presumably by $H_2^{(0)}$) on the sulfonamide occurs, and acid catalyzed regeneration of Ag^+ , and protodesilylation results in <u>6</u>. ACKNOWLEDGEMENTS:

The National Institute of Health (GM 29801) is gratefully thanked for their financial support. Dr. John Huffman, Molecular Structure Center, Indiana University, Bloomington IN 47405, is thanked for the X-ray structure determinations of <u>4</u> and <u>7</u>.

REFERENCES AND FOOTNOTES:

- P. Magnus, T. Gallagher and P. Brown, J. Am. Chem. Soc., 1984, 106, 2105; P. Magnus, T. Gallagher, P. Brown and P. Pappalardo, Acc. Chem. Res., 1984, <u>17</u>, 35.
- 2. A.R. Battersby, J.C. Byrne, H. Gregory and S.P. Popli, <u>J. Chem. Soc. (C)</u>, 1967, 813.
- D.J. Bellville, and N.L. Bauld, J. Am. Chem. Soc., 1981, 103, 718; 1982, 104, 2665; R.A. Pabon, and N.L. Bauld, <u>Ibid.</u>, 1984, 106, 1145; N.L. Bauld, D.J. Bellville, R.A. Pabon, R. Chelsky and G. Green, <u>Ibid.</u>, 1985, 105, 2378.
- 4. P.G. Gassman, and D.A. Singleton, J. Am. Chem. Soc., 1984, 106, 7993; 1984, 106, 6085; Certain intramolecular Diels-Alder reactions are catalyzed by aminium cation-radicals and proton acids: - F.A. Bell, A. Ledwith and D.C. Sherrington, J. Chem. Soc., 1969, 2719; A. Ledwith, Acc. Chem. Res., 1972, 5, 133; D.H.R. Barton, R.K. Haynes, G. Leclerc, P. Magnus and I.D. Menzies, J. Chem. Soc., Perkin Trans. 1, 1975, 2055.
- ¹H NMR (360MHz) δ 7.84(2H,m), 7.75(1H,d,J=7Hz), 7.7(2H,d,J=9Hz), 7.55(1H,d,J=7Hz), 7.32(4H,m), 7.05(1H,t,J=7Hz), 6.85(2H,d,J=9Hz), 5.21(1H,d,J=5.6Hz), 4.2(1H,dd,J's=5 and 13.5Hz), 4.0(1H,t,J=6.5Hz), 3.83(3H,s), 3.38(1H,d,J=9.5Hz), 2.99(1H,s), 2.75(1H, d of t, J's=3 and 12Hz), 2.25(2H,m), 2.18(1H,t,J=7Hz), 2.00(1H,dd,J's=4.5 and 15Hz), 1.78(1H,t,J=14Hz), 1.65(2H,m), 1.47(1H,bm). Anal. Calcd. for C_{33H30N2O4S2}: C, 68.01; H, 5.19; N, 4.81. Found:C, 68.06; H, 5.22; N, 4.68.
- The structure of 4 has been determined crystallographically FIGURE 1. Details are available on microfiche, from the Indiana University Chemistry Library - request Structure Report No.85059.
- 7. The substrate 5 was prepared by alkylation of the corresponding C-11 proton adduct. 5 has \overline{m} .p. 119-122° (MeOH). Anal. Calcd. for $C_{36}H_{36}N_2O_4S_2Si$: C, 66.23; H, 5.56; \overline{N} , 4.29. Found: C, 66.10; H, 5.49; N, 4.33.
- ¹H NMR (360MHz) δ 7.67(1H,d,J=8Hz), 7.5-7.6(3H,m), 7.45(1H,t,J=8Hz), 7.28(1H,d,J=8Hz), 7.18-7.23(3H,m), 5.65(1H,d,J=6.3Hz), 5.10(1H,s), 4.55(1H,s), 4.32(1H,dd,J's=3.6 and 14Hz), 4.15(1H,d,J=6Hz), 3.88(1H,s), 3.08(1H,d of t,J's=3.6 and 13Hz), 2.65(2H,ABq,J=16Hz,Δν=100), 2.55(1H,m), 2.17(1H,d of t,J's=4 and 13Hz), 1.9(H,bd,J=14Hz), 1.65(1H,bm). Anal. calcd. for C₂₆H₂₂N₂OS: C, 76.07; H, 5.40; N, 6.82. Found: C, 76.41; H, 5.31; N, 6.74.
- 9. ¹H NMR (360MHz) & 7.59(2H,m), 7.38(1H,t,J=9Hz), 7.2-7.3(5H,m), 7.07(1H,t,J=8Hz), 5.65 (1H,d,J=6Hz), 5.18(1H,bs), 4.74(1H,s), 4.52(1H,s), 4.27(1H,d of d,J's=5 and 14.7Hz), 4.1 (1H,bm), 4.02(3H,s), 3.19(1H,d of t,J's=3 and 10Hz), 2.58(1H,d,J=13Hz), 2.43(3H,m), 1.9(1H,d,J=13Hz), 1.6(1H,m). Anal. Calcd. for C₂₉H₂₅N₃O₃S: C, 70.28; H, 5.08; N, 8.49. Found: C, 70.19; H, 5.07; N, 8.42.
- 10. The structure of <u>7</u> has been determined crystallographically see ortep below. Details are available on microfiche, from the Indiana University Chemistry Library - request Structure Report No.85053.

Ortep of $\underline{7}$